Polstelle

Polstelle
Pol|stelle,
 
Pol, Mathematik: bei einer reellen oder komplexen Funktion eine Unendlichkeitsstelle, d. h. eine Stelle, an der die Funktion nicht definiert ist, in deren Umgebung aber die Funktion betragsmäßig beliebig große Werte annimmt; z. B. hat die Funktion
 
Polstelle bei x = —2, x = —1 und x = 1. Polstellen meromorpher Funktionen lassen sich mithilfe der Laurent-Reihe charakterisieren.

* * *

Pol|stel|le, die (Math.): 1Pol (3).

Universal-Lexikon. 2012.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Polstelle — In der Mathematik bezeichnet man eine einpunktige Definitionslücke einer Funktion als Polstelle oder auch kürzer als Pol, wenn die Funktionswerte in jeder Umgebung des Punktes (betragsmäßig) beliebig groß werden. Damit gehören die Polstellen zu… …   Deutsch Wikipedia

  • Polstellen — In der Mathematik bezeichnet man eine einpunktige Definitionslücke einer Funktion als Polstelle oder auch kürzer als Pol, wenn die Funktionswerte in jeder Umgebung des Punktes (betragsmäßig) beliebig groß werden. Damit gehören die Polstellen zu… …   Deutsch Wikipedia

  • Unendlichkeitsstelle — In der Mathematik bezeichnet man eine einpunktige Definitionslücke einer Funktion als Polstelle oder auch kürzer als Pol, wenn die Funktionswerte in jeder Umgebung des Punktes (betragsmäßig) beliebig groß werden. Damit gehören die Polstellen zu… …   Deutsch Wikipedia

  • Extremstelle — Unter Kurvendiskussion versteht man in der Mathematik die Untersuchung des Graphen einer Funktion auf dessen Eigenschaften, wie zum Beispiel Nullstellen, Hoch und Tiefpunkte, Wendepunkte, Polstellen, Verhalten im Unendlichen usw. Die Ergebnisse… …   Deutsch Wikipedia

  • Extremwertproblem — Unter Kurvendiskussion versteht man in der Mathematik die Untersuchung des Graphen einer Funktion auf dessen Eigenschaften, wie zum Beispiel Nullstellen, Hoch und Tiefpunkte, Wendepunkte, Polstellen, Verhalten im Unendlichen usw. Die Ergebnisse… …   Deutsch Wikipedia

  • Funktionsuntersuchung — Unter Kurvendiskussion versteht man in der Mathematik die Untersuchung des Graphen einer Funktion auf dessen Eigenschaften, wie zum Beispiel Nullstellen, Hoch und Tiefpunkte, Wendepunkte, Polstellen, Verhalten im Unendlichen usw. Die Ergebnisse… …   Deutsch Wikipedia

  • Hebbare Definitionslücke — Die stetig behebbare oder hebbare Definitionslücke tritt unter anderem bei Funktionen der Mathematik auf, die aus der Division einer Funktion durch eine zweite entstehen. Formal geschrieben sei . Prinzipiell können sowohl u(x) als auch v(x) den… …   Deutsch Wikipedia

  • Stetige Fortsetzung — Die stetig behebbare oder hebbare Definitionslücke tritt unter anderem bei Funktionen der Mathematik auf, die aus der Division einer Funktion durch eine zweite entstehen. Formal geschrieben sei . Prinzipiell können sowohl u(x) als auch v(x) den… …   Deutsch Wikipedia

  • Stetig behebbare Definitionslücke — Die stetig behebbare oder hebbare Definitionslücke tritt unter anderem bei Funktionen der Mathematik auf, die aus der Division einer Funktion durch eine zweite entstehen. Formal geschrieben sei . Prinzipiell können sowohl u(x) als auch v(x) den… …   Deutsch Wikipedia

  • Kurvendiskussion — Unter Kurvendiskussion versteht man in der Mathematik die Untersuchung des Graphen einer Funktion auf dessen geometrische Eigenschaften, wie zum Beispiel Nullstellen, Hoch und Tiefpunkte, Wendepunkte, gegebenenfalls Sattel und Flachpunkte,… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”